Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.484
Filtrar
1.
Virulence ; 15(1): 2350904, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38725098

RESUMO

Fusobacterium nucleatum (F. nucleatum) is closely correlated with tumorigenesis in colorectal cancer (CRC). We aimed to investigate the effects of host norepinephrine on the carcinogenicity of F. nucleatum in CRC and reveal the underlying mechanism. The results revealed that both norepinephrine and bacterial quorum sensing (QS) molecule auto-inducer-2 (AI-2) were positively associated with the progression of F. nucleatum related CRC (p < 0.01). In vitro studies, norepinephrine induced upregulation of QS-associated genes and promoted the virulence and proliferation of F. nucleatum. Moreover, chronic stress significantly increased the colon tumour burden of ApcMin/+ mice infected with F. nucleatum (p < 0.01), which was decreased by a catecholamine inhibitor (p < 0.001). Our findings suggest that stress-induced norepinephrine may promote the progression of F. nucleatum related CRC via bacterial QS signalling. These preliminary data provide a novel strategy for the management of pathogenic bacteria by targeting host hormones-bacterial QS inter-kingdom signalling.


Assuntos
Neoplasias Colorretais , Fusobacterium nucleatum , Norepinefrina , Percepção de Quorum , Transdução de Sinais , Percepção de Quorum/efeitos dos fármacos , Fusobacterium nucleatum/patogenicidade , Fusobacterium nucleatum/efeitos dos fármacos , Fusobacterium nucleatum/fisiologia , Animais , Neoplasias Colorretais/microbiologia , Norepinefrina/farmacologia , Camundongos , Humanos , Progressão da Doença , Infecções por Fusobacterium/microbiologia , Virulência , Homosserina/análogos & derivados , Homosserina/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Lactonas
2.
J Photochem Photobiol B ; 255: 112905, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703452

RESUMO

Bacterial antibiotic resistance is one of the most significant challenges for public health. The increase in bacterial resistance, mainly due to microorganisms harmful to health, and the need to search for alternative treatments to contain infections that cannot be treated by conventional antibiotic therapy has been aroused. An alternative widely studied in recent decades is antimicrobial photodynamic therapy (aPDT), a treatment that can eliminate microorganisms through oxidative stress. Although this therapy has shown satisfactory results in infection control, it is still controversial in the scientific community whether bacteria manage to develop resistance after successive applications of aPDT. Thus, this work provides an overview of the articles that performed successive aPDT applications in models using bacteria published since 2010, focusing on sublethal dose cycles, highlighting the main PSs tested, and addressing the possible mechanisms for developing tolerance or resistance to aPDT, such as efflux pumps, biofilm formation, OxyR and SoxRS systems, catalase and superoxide dismutase enzymes and quorum sensing.


Assuntos
Biofilmes , Farmacorresistência Bacteriana , Fotoquimioterapia , Fármacos Fotossensibilizantes , Farmacorresistência Bacteriana/efeitos dos fármacos , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Biofilmes/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Percepção de Quorum/efeitos dos fármacos , Humanos , Catalase/metabolismo , Estresse Oxidativo/efeitos dos fármacos
3.
Int J Nanomedicine ; 19: 3861-3890, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708178

RESUMO

Introduction: Cystic fibrosis (CF) is associated with pulmonary Pseudomonas aeruginosa infections persistent to antibiotics. Methods: To eradicate pseudomonal biofilms, solid lipid nanoparticles (SLNs) loaded with quorum-sensing-inhibitor (QSI, disrupting bacterial crosstalk), coated with chitosan (CS, improving internalization) and immobilized with alginate lyase (AL, destroying alginate biofilms) were developed. Results: SLNs (140-205 nm) showed prolonged release of QSI with no sign of acute toxicity to A549 and Calu-3 cells. The CS coating improved uptake, whereas immobilized-AL ensured >1.5-fold higher uptake and doubled SLN diffusion across the artificial biofilm sputum model. Respirable microparticles comprising SLNs in carbohydrate matrix elicited aerodynamic diameters MMAD (3.54, 2.48 µm) and fine-particle-fraction FPF (65, 48%) for anionic and cationic SLNs, respectively. The antimicrobial and/or antibiofilm activity of SLNs was explored in Pseudomonas aeruginosa reference mucoid/nonmucoid strains as well as clinical isolates. The full growth inhibition of planktonic bacteria was dependent on SLN type, concentration, growth medium, and strain. OD measurements and live/dead staining proved that anionic SLNs efficiently ceased biofilm formation and eradicated established biofilms, whereas cationic SLNs unexpectedly promoted biofilm progression. AL immobilization increased biofilm vulnerability; instead, CS coating increased biofilm formation confirmed by 3D-time lapse confocal imaging. Incubation of SLNs with mature biofilms of P. aeruginosa isolates increased biofilm density by an average of 1.5-fold. CLSM further confirmed the binding and uptake of the labeled SLNs in P. aeruginosa biofilms. Considerable uptake of CS-coated SLNs in non-mucoid strains could be observed presumably due to interaction of chitosan with LPS glycolipids in the outer cell membrane of P. aeruginosa. Conclusion: The biofilm-destructive potential of QSI/SLNs/AL inhalation is promising for site-specific biofilm-targeted interventional CF therapy. Nevertheless, the intrinsic/extrinsic fundamentals of nanocarrier-biofilm interactions require further investigation.


Assuntos
Antibacterianos , Biofilmes , Quitosana , Lipossomos , Nanopartículas , Infecções por Pseudomonas , Pseudomonas aeruginosa , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Humanos , Infecções por Pseudomonas/tratamento farmacológico , Nanopartículas/química , Quitosana/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/farmacocinética , Portadores de Fármacos/química , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Lipídeos/química , Lipídeos/farmacologia , Percepção de Quorum/efeitos dos fármacos , Células A549 , Alginatos/química
4.
Microbiology (Reading) ; 170(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38687006

RESUMO

Antimicrobial resistance poses an escalating global threat, rendering traditional drug development approaches increasingly ineffective. Thus, novel alternatives to antibiotic-based therapies are needed. Exploiting pathogen cooperation as a strategy for combating resistant infections has been proposed but lacks experimental validation. Empirical findings demonstrate the successful invasion of cooperating populations by non-cooperating cheats, effectively reducing virulence in vitro and in vivo. The idea of harnessing cooperative behaviours for therapeutic benefit involves exploitation of the invasive capabilities of cheats to drive medically beneficial traits into infecting populations of cells. In this study, we employed Pseudomonas aeruginosa quorum sensing cheats to drive antibiotic sensitivity into both in vitro and in vivo resistant populations. We demonstrated the successful invasion of cheats, followed by increased antibiotic effectiveness against cheat-invaded populations, thereby establishing an experimental proof of principle for the potential application of the Trojan strategy in fighting resistant infections.


Assuntos
Antibacterianos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Percepção de Quorum , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Antibacterianos/farmacologia , Percepção de Quorum/efeitos dos fármacos , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Animais , Virulência/efeitos dos fármacos , Farmacorresistência Bacteriana , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
5.
Eur J Med Chem ; 271: 116410, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38615409

RESUMO

With the increasing reports of antibiotic resistance in this species, Pseudomonas aeruginosa is a common human pathogen with important implications for public health. Bacterial quorum sensing (QS) systems are potentially broad and versatile targets for developing new antimicrobial compounds. While previous reports have demonstrated that certain amide compounds can inhibit bacterial growth, there are few reports on the specific inhibitory effects of these compounds on bacterial quorum sensing systems. In this study, thirty-one amide derivatives were synthesized. The results of the biological activity assessment indicated that A9 and B6 could significantly inhibit the expression of lasB, rhlA, and pqsA, effectively reducing several virulence factors regulated by the QS systems of PAO1. Additionally, compound A9 attenuated the pathogenicity of PAO1 to Galleria mellonella larvae. Meanwhile, RT-qPCR, SPR, and molecular docking studies were conducted to explore the mechanism of these compounds, which suggests that compound A9 inhibited the QS systems by binding with LasR and PqsR, especially PqsR. In conclusion, amide derivatives A9 and B6 exhibit promising potential for further development as novel QS inhibitors in P. aeruginosa.


Assuntos
Amidas , Antibacterianos , Descoberta de Drogas , Simulação de Acoplamento Molecular , Pseudomonas aeruginosa , Percepção de Quorum , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Amidas/farmacologia , Amidas/química , Amidas/síntese química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Relação Estrutura-Atividade , Estrutura Molecular , Testes de Sensibilidade Microbiana , Relação Dose-Resposta a Droga , Animais
6.
Eur J Med Res ; 29(1): 246, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649897

RESUMO

BACKGROUND: Staphylococcus aureus is a notorious multidrug resistant pathogen prevalent in healthcare facilities worldwide. Unveiling the mechanisms underlying biofilm formation, quorum sensing and antibiotic resistance can help in developing more effective therapy for S. aureus infection. There is a scarcity of literature addressing the genetic profiles and correlations of biofilm-associated genes, quorum sensing, and antibiotic resistance among S. aureus isolates from Malaysia. METHODS: Biofilm and slime production of 68 methicillin-susceptible S. aureus (MSSA) and 54 methicillin-resistant (MRSA) isolates were determined using a a plate-based crystal violet assay and Congo Red agar method, respectively. The minimum inhibitory concentration values against 14 antibiotics were determined using VITEK® AST-GP67 cards and interpreted according to CLSI-M100 guidelines. Genetic profiling of 11 S. aureus biofilm-associated genes and agr/sar quorum sensing genes was performed using single or multiplex polymerase chain reaction (PCR) assays. RESULTS: In this study, 75.9% (n = 41) of MRSA and 83.8% (n = 57) of MSSA isolates showed strong biofilm-forming capabilities. Intermediate slime production was detected in approximately 70% of the isolates. Compared to MSSA, significantly higher resistance of clindamycin, erythromycin, and fluoroquinolones was noted among the MRSA isolates. The presence of intracellular adhesion A (icaA) gene was detected in all S. aureus isolates. All MSSA isolates harbored the laminin-binding protein (eno) gene, while all MRSA isolates harbored intracellular adhesion D (icaD), clumping factors A and B (clfA and clfB) genes. The presence of agrI and elastin-binding protein (ebpS) genes was significantly associated with biofilm production in MSSA and MRSA isolates, respectively. In addition, agrI gene was also significantly correlated with oxacillin, cefoxitin, and fluoroquinolone resistance. CONCLUSIONS: The high prevalence of biofilm and slime production among MSSA and MRSA isolates correlates well with the detection of a high prevalence of biofilm-associated genes and agr quorum sensing system. A significant association of agrI gene was found with cefoxitin, oxacillin, and fluoroquinolone resistance. A more focused approach targeting biofilm-associated and quorum sensing genes is important in developing new surveillance and treatment strategies against S. aureus biofilm infection.


Assuntos
Antibacterianos , Biofilmes , Hospitais de Ensino , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Percepção de Quorum , Staphylococcus aureus , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Percepção de Quorum/genética , Percepção de Quorum/efeitos dos fármacos , Malásia , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Antibacterianos/farmacologia , Staphylococcus aureus/genética , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/isolamento & purificação , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Proteínas de Bactérias/genética
7.
Mar Drugs ; 22(4)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38667778

RESUMO

Bacillus cereus, a common food-borne pathogen, forms biofilms and generates virulence factors through a quorum sensing (QS) mechanism. In this study, six compounds (dankasterone A, demethylincisterol A3, zinnimidine, cyclo-(L-Val-L-Pro), cyclo-(L-Ile-L-Pro), and cyclo-(L-Leu-L-Pro)) were isolated from the endophytic fungus Pithomyces sacchari of the Laurencia sp. in the South China Sea. Among them, demethylincisterol A3, a sterol derivative, exhibited strong QS inhibitory activity against B. cereus. The QS inhibitory activity of demethylincisterol A3 was evaluated through experiments. The minimum inhibitory concentration (MIC) of demethylincisterol A3 against B. cereus was 6.25 µg/mL. At sub-MIC concentrations, it significantly decreased biofilm formation, hindered mobility, and diminished the production of protease and hemolysin activity. Moreover, RT-qPCR results demonstrated that demethylincisterol A3 markedly inhibited the expression of QS-related genes (plcR and papR) in B. cereus. The exposure to demethylincisterol A3 resulted in the downregulation of genes (comER, tasA, rpoN, sinR, codY, nheA, hblD, and cytK) associated with biofilm formation, mobility, and virulence factors. Hence, demethylincisterol A3 is a potentially effective compound in the pipeline of innovative antimicrobial therapies.


Assuntos
Antibacterianos , Bacillus cereus , Biofilmes , Testes de Sensibilidade Microbiana , Percepção de Quorum , Percepção de Quorum/efeitos dos fármacos , Bacillus cereus/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Laurencia/microbiologia , Fatores de Virulência , China , Endófitos
8.
Mar Drugs ; 22(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38667794

RESUMO

An ethyl acetate extract of a marine actinomycete strain, Nocardiopsis mentallicus SCSIO 53858, isolated from a deep-sea sediment sample in the South China Sea, exhibited anti-quorum-sensing (QS) activity against Chromobacterium violaceum CV026. Guided by the anti-QS activity, a novel active compound was isolated and purified from the extract and was identified as 2,3-dimethoxycinnamic acid (2,3-DCA) through spectral data analysis. At a concentration of 150 µg/mL, 2,3-DCA exhibited robust inhibitory effects on three QS-regulated traits of C. violaceum CV026: violacein production, swarming motility, and biofilm formation, with inhibition rates of 73.9%, 65.9%, and 37.8%, respectively. The quantitative reverse transcription polymerase chain reaction results indicated that 2,3-DCA can disrupt the QS system in C. violaceum CV026 by effectively suppressing the expression of QS-related genes, including cviR, vioA, vioB, and vioE. Molecular docking analysis revealed that 2,3-DCA hinders the QS system by competitively binding to the same binding pocket on the CviR receptor as the natural signal molecule N-hexanoyl-L-homoserine lactone. Collectively, these findings suggest that 2,3-DCA exhibits promising potential as an inhibitor of QS systems, providing a potential solution to the emerging problem of bacterial resistance.


Assuntos
Antibacterianos , Chromobacterium , Indóis , Simulação de Acoplamento Molecular , Percepção de Quorum , Percepção de Quorum/efeitos dos fármacos , Chromobacterium/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/isolamento & purificação , Antibacterianos/química , Actinobacteria/química , Cinamatos/farmacologia , Cinamatos/isolamento & purificação , Cinamatos/química , Biofilmes/efeitos dos fármacos , Sedimentos Geológicos/microbiologia , Organismos Aquáticos , China
9.
World J Microbiol Biotechnol ; 40(6): 184, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683406

RESUMO

The use of engineered nanoparticles against pathogenic bacteria has gained attention. In this study, zinc oxide nanoparticles conjugated with rutin were synthesized and their antivirulence properties against Pseudomonas aeruginosa and Staphylococcus aureus. The physicochemical characteristics of ZnO-Rutin NPs were investigated using SEM, FT-IR, XRD, DLS, EDS, and zeta potential analyses. Antimicrobial properties were evaluated by well diffusion, microdilution, growth curve, and hemolytic activity assays. The expression of quorum sensing (QS) genes including the lasI and rhlI in P. aeruginosa and agrA in S. aureus was assessed using real-time PCR. Swimming, swarming, twitching, and pyocyanin production by P. aeruginosa were evaluated. The NPs were amorphous, 14-100 nm in diameter, surface charge of -34.3 mV, and an average hydrodynamic size of 161.7 nm. Regarding the antibacterial activity, ZnO-Rutin NPs were more potent than ZnO NPs and rutin, and stronger inhibitory effects were observed on S. aureus than on P. aeruginosa. ZnO-Rutin NPs inhibited the hemolytic activity of P. aeruginosa and S. aureus by 93.4 and 92.2%, respectively, which was more efficient than bare ZnO NPs and rutin. ZnO-Rutin NPs reduced the expression of the lasI and rhlI in P. aeruginosa by 0.17-0.43 and 0.37-0.70 folds, respectively while the expression of the agrA gene in S. aureus was decreased by 0.46-0.56 folds. Furthermore, ZnO-Rutin NPs significantly reduced the swimming and twitching motility and pyocyanin production of P. aeruginosa. This study demonstrates the antivirulence features of ZnO-Rutin NPs against pathogenic bacteria which can be associated with their QS inhibitory effects.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Percepção de Quorum , Rutina , Staphylococcus aureus , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Rutina/farmacologia , Rutina/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Percepção de Quorum/efeitos dos fármacos , Nanopartículas/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Nanopartículas Metálicas/química , Hemólise/efeitos dos fármacos , Virulência/efeitos dos fármacos , Tamanho da Partícula , Piocianina/metabolismo
10.
Biomolecules ; 14(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38672469

RESUMO

Porcine extraintestinal pathogenic Escherichia coli (ExPEC) is a pathogenic bacterium that causes huge economic losses to the pig farming industry and considerably threatens human health. The quorum sensing (QS) system plays a crucial role in the survival and pathogenesis of pathogenic bacteria. Hence, it is a viable approach to prevent ExPEC infection by compromising the QS system, particularly the LuxS/AI-2 system. In this study, we investigated the effects of baicalin on the LuxS/AI-2 system of ExPEC. Baicalin at concentrations of 25, 50, and 100 µg/mL significantly diminished the survival ability of ExPEC in hostile environments and could inhibit the biofilm formation and autoagglutination ability in ExPEC. Moreover, baicalin dose-dependently decreased the production of AI-2 and down-regulated the expression level of luxS in PCN033. These results suggest that baicalin can weaken the virulence of PCN033 by inhibiting the LuxS/AI-2 system. After the gene luxS was deleted, AI-2 production in PCN033 was almost completely eliminated, similar to the effect of baicalin on the production of AI-2 in PCN033. This indicates that baicalin reduced the production of AI-2 by inhibiting the expression level of luxS in ExPEC. In addition, the animal experiment further showed the potential of baicalin as a LuxS/AI-2 system inhibitor to prevent ExPEC infection. This study highlights the potential of baicalin as a natural quorum-sensing inhibitor for therapeutic applications in preventing ExPEC infection by targeting the LuxS/AI-2 system.


Assuntos
Proteínas de Bactérias , Liases de Carbono-Enxofre , Escherichia coli Extraintestinal Patogênica , Flavonoides , Homosserina , Homosserina/análogos & derivados , Percepção de Quorum , Percepção de Quorum/efeitos dos fármacos , Flavonoides/farmacologia , Animais , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Suínos , Virulência/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Homosserina/metabolismo , Escherichia coli Extraintestinal Patogênica/efeitos dos fármacos , Escherichia coli Extraintestinal Patogênica/patogenicidade , Escherichia coli Extraintestinal Patogênica/genética , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Lactonas/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Doenças dos Suínos/microbiologia , Doenças dos Suínos/tratamento farmacológico
11.
Arch Oral Biol ; 163: 105976, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38640776

RESUMO

OBJECTIVE: The present study investigated the effects of 4-hydroxy-3-methoxybenzaldehyde (4-H-3-MB) against Streptococcus mutans (S. mutans) using an in vitro cariogenic biofilm model. DESIGN: The antimicrobial susceptibility of biofilm-forming S. mutans was evaluated by disc diffusion method. In vitro investigations were performed using crystal violet staining assay (biofilm assay), exopolysaccharide (EPS) assay, acid production, growth curve analysis, optical microscopic, and FE-SEM analyses to determine the antibiofilm activity of 4-H-3-MB. RESULTS: S. mutans (SDC-05) was resistant to ampicillin, piperacillin/tazobactam and ceftriaxone, whereas the other strains of S. mutans (SDC-01, 02, 03 and SDC-04) were sensitive to all the antibiotics tested. 4-H-3-MB showed promising antibiofilm activity on S. mutans UA159 (79.81 %, 67.76 % and 56.31 %) and S. mutans SDC-05 (77.00 %, 59.48 % and 48.22 %) at the lowest concentration of 0.2, 0.1, 0.05 mg/ml. 4-H-3-MB did not inhibit bacterial growth even at concentrations 0.2 mg/ml. Similarly, 4-H-3-MB led to significant attrition in exopolysaccharide (EPS) and acid production by S. mutans UA159 and S. mutans (SDC-05) at the concentration of 0.2, 0.1 mg/ml, respectively. Optical microscopy and FE-SEM analysis 4-H-3-MB reduced the biofilm thickness of S. mutans UA159 and S. mutans SDC-05 relative to the untreated specimens. CONCLUSION: 4-H-3-MB significantly inhibited biofilm formation by S. mutans in a dose-dependent manner. Hence, our findings indicate that the active principle of 4-H-3-MB could be used as a biofilm inhibiting agent against S. mutans.


Assuntos
Antibacterianos , Benzaldeídos , Biofilmes , Testes de Sensibilidade Microbiana , Percepção de Quorum , Streptococcus mutans , Fatores de Virulência , Streptococcus mutans/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Benzaldeídos/farmacologia , Antibacterianos/farmacologia , Polissacarídeos Bacterianos/farmacologia , Microscopia Eletrônica de Varredura , Técnicas In Vitro
12.
J Appl Microbiol ; 135(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38587815

RESUMO

AIMS: Drug repurposing is an attractive strategy to control biofilm-related infectious diseases. In this study, two drugs (montelukast and cefoperazone) with well-established therapeutic applications were tested on Pseudomonas aeruginosa quorum sensing (QS) inhibition and biofilm control. METHODS AND RESULTS: The activity of montelukast and cefoperazone was evaluated for Pqs signal inhibition, pyocyanin synthesis, and prevention and eradication of Ps. aeruginosa biofilms. Cefoperazone inhibited the Pqs system by hindering the production of the autoinducer molecules 2-heptyl-4-hydroxyquinoline (HHQ) and 2-heptyl-3-hydroxy-4(1H)-quinolone (the Pseudomonas quinolone signal or PQS), corroborating in silico results. Pseudomonas aeruginosa pyocyanin production was reduced by 50%. The combination of the antibiotics cefoperazone and ciprofloxacin was synergistic for Ps. aeruginosa biofilm control. On the other hand, montelukast had no relevant effects on the inhibition of the Pqs system and against Ps. aeruginosa biofilm. CONCLUSION: This study provides for the first time strong evidence that cefoperazone interacts with the Pqs system, hindering the formation of the autoinducer molecules HHQ and PQS, reducing Ps. aeruginosa pathogenicity and virulence. Cefoperazone demonstrated a potential to be used in combination with less effective antibiotics (e.g. ciprofloxacin) to potentiate the biofilm control action.


Assuntos
Acetatos , Antibacterianos , Biofilmes , Cefoperazona , Ciclopropanos , Pseudomonas aeruginosa , Quinolinas , Percepção de Quorum , Sulfetos , Pseudomonas aeruginosa/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Sulfetos/farmacologia , Percepção de Quorum/efeitos dos fármacos , Antibacterianos/farmacologia , Acetatos/farmacologia , Quinolinas/farmacologia , Ciclopropanos/farmacologia , Cefoperazona/farmacologia , Testes de Sensibilidade Microbiana , Piocianina/metabolismo , Ciprofloxacina/farmacologia , Quinolonas/farmacologia
13.
Antimicrob Agents Chemother ; 68(5): e0011824, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38526048

RESUMO

Quorum sensing is a type of cell-cell communication that modulates various biological activities of bacteria. Previous studies indicate that quorum sensing contributes to the evolution of bacterial resistance to antibiotics, but the underlying mechanisms are not fully understood. In this study, we grew Pseudomonas aeruginosa in the presence of sub-lethal concentrations of ciprofloxacin, resulting in a large increase in ciprofloxacin minimal inhibitory concentration. We discovered that quorum sensing-mediated phenazine biosynthesis was significantly enhanced in the resistant isolates, where the quinolone circuit was the predominant contributor to this phenomenon. We found that production of pyocyanin changed carbon flux and showed that the effect can be partially inhibited by the addition of pyruvate to cultures. This study illustrates the role of quorum sensing-mediated phenotypic resistance and suggests a strategy for its prevention.


Assuntos
Antibacterianos , Ciprofloxacina , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Fenazinas , Pseudomonas aeruginosa , Piocianina , Percepção de Quorum , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Ciprofloxacina/farmacologia , Percepção de Quorum/efeitos dos fármacos , Fenazinas/farmacologia , Fenazinas/metabolismo , Antibacterianos/farmacologia , Piocianina/biossíntese , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Quinolonas/farmacologia
14.
J Nat Prod ; 87(4): 1268-1284, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38390739

RESUMO

Bacteria are social microorganisms that use communication systems known as quorum sensing (QS) to regulate diverse cellular behaviors including the production of various secreted molecules. Bacterial secondary metabolites are widely studied for their bioactivities including antibiotic, antifungal, antiparasitic, and cytotoxic compounds. Besides playing a crucial role in natural bacterial niches and intermicrobial competition by targeting neighboring organisms and conferring survival advantages to the producer, these bioactive molecules may be of prime interest to develop new antimicrobials or anticancer therapies. This review focuses on bioactive compounds produced under acyl homoserine lactone-based QS regulation by Gram-negative bacteria that are pathogenic to humans and animals, including the Burkholderia, Serratia, Pseudomonas, Chromobacterium, and Pseudoalteromonas genera. The synthesis, regulation, chemical nature, biocidal effects, and potential applications of these identified toxic molecules are presented and discussed in light of their role in microbial interactions.


Assuntos
Acil-Butirolactonas , Percepção de Quorum , Percepção de Quorum/efeitos dos fármacos , Acil-Butirolactonas/metabolismo , Acil-Butirolactonas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Negativas/efeitos dos fármacos , Estrutura Molecular , Humanos , Burkholderia/metabolismo , Chromobacterium/efeitos dos fármacos
15.
J Mol Model ; 29(8): 258, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37468720

RESUMO

CONTEXT: Staphylococcus aureus is a highly pathogenic organism that is the most common cause of postoperative complications as well as severe infections like bacteremia and infective endocarditis. By mediating the formation of biofilms and the expression of virulent genes, the quorum sensing (QS) mechanism is a major contributor to the development of these diseases. By hindering its QS network, an innovative approach to avoiding this bacterial infection is taken. Targeting the AgrA of the Agr system serves as beneficial in holding the top position in the QS system cascade. METHODS: Using known AgrA inhibitors, the machine learning algorithms (artificial neural network, naïve Bayes, random forest, and support vector machine) and pharmacophore model were developed. The potential lead compounds were screened against the Zinc and COCONUT databases using the best pharmacophore hypothesis. The hits were then subjected second screening process using the best machine learning model. The predicted active compounds were then reranked based on the docking score. The stability of AgrA-lead compounds was studied using molecular dynamics approaches, and an ADME profile was also carried out. Five lead compounds, namely, CNP02386963,4,5-trihydroxy-2-[({7,13,14-trihydroxy-3,10-dioxo-2,9-dioxatetracyclo[6.6.2.04,16.011,15]hexadeca-1(14),4,6,8(16),11(15),12-hexaen-6-yl}oxy)methyl]benzoic acid, CNP0129274 4-(dimethylamino)-1,5,6,10,12,12a-hexahydroxy-6-methyl-3,11-dioxo-3,4,4a,5,5a,6,11,12a-octahydrotetracene-2-carboxamide, CNP0242717 3-Hydroxyasebotin, CNP0361624 3,4,5-trihydroxy-6-[(2,4,5,6,7-pentahydroxy-1-oxooctan-3-yl)oxy]oxane-2-carboxylic acid, and CNP0285058 2-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-2-(4-hydroxyphenyl)acetonitrile were obtained using the two-step virtual screening process. The molecular dynamics study revealed that the CNP0238696 was found to be stable in the binding pocket of AgrA. ADME profiles show that this compound has two Lipinski violations and low bioavailability. Further studies should be performed to assess the anti-biofilm activity of the lead compound in vitro.


Assuntos
Antibacterianos , Proteínas de Bactérias , Aprendizado de Máquina , Percepção de Quorum , Staphylococcus aureus , Staphylococcus aureus/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Percepção de Quorum/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas , Farmacóforo , Antibacterianos/química , Simulação de Dinâmica Molecular , Descoberta de Drogas
16.
Chem Biodivers ; 20(4): e202300134, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36898082

RESUMO

This is the first report on the separation and biological assessment of all metabolites derived from Pulicaria armena (Asteraceae) which is an endemic species narrowly distributed in the eastern part of Turkey. The phytochemical analysis of P. armena resulted in the identification of one simple phenolic glucoside together with eight flavon and flavonol derivatives whose chemical structures were elucidated by NMR experiments and by the comparison of the spectral data with the relevant literature. The screening of all molecules for their antimicrobial, anti-quorum sensing, and cytotoxic activities revealed the biological potential of some of the isolated compounds. Additionally, quorum sensing inhibitory activity of quercetagetin 5,7,3' trimethyl ether was supported by molecular docking studies in the active site of LasR which is the primary regulator of this cell-to-cell communication system in bacteria. Lastly, the critical molecular properties indicating drug-likeness of the compounds isolated from P. armena were predicted. As microbial infections can be a serious problem for cancer patients with compromised immune systems, this comprehensive phytochemical research on P. armena with its anti-quorum sensing and cytotoxic compounds can provide a new approach to the treatment.


Assuntos
Anti-Infecciosos , Asteraceae , Flavonoides , Pulicaria , Percepção de Quorum , Humanos , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Asteraceae/química , Flavonoides/química , Flavonoides/farmacologia , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/metabolismo , Compostos Fitoquímicos/farmacologia , Pulicaria/química , Percepção de Quorum/efeitos dos fármacos
17.
Bioorg Chem ; 130: 106266, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36399865

RESUMO

The antibiotic crisis is associated with the appearance of multidrug resistant (MDR) pathogens, which has caused severe bacterial infections and imposed a huge burden on modern society. Therefore, there is an urgent need to develop new antibacterial drugs with novel mechanism of action. Here we designed and synthesized three series of benzoxazolone, oxazolopyridinone and 3-(2-hydroxyphenyl)hydantoin derivatives and evaluated their activity as novel quorum sensing (QS) inhibitors. We found that benzoxazolone and oxazolopyridinone derivatives had promising QS inhibitory activity in the minimum inhibitory concentration, pyocyanin and rhamnolipid inhibition assays. In particular, A10 and B20 at 256 µg/mL not only suppressed pyocyanin production regulated by QS in P. aeruginosa PAO1 by 36.55% and 46.90%, respectively, but also showed the strongest rhamnolipid inhibitory activity with the IC50 values of 66.35 and 56.75 µg/mL, respectively. Further studies demonstrated that B20 at 64 µg/mL inhibited biofilm formation in P. aeruginosa PAO1 by 40%, and weakened its swarming motility. More importantly, the bacterial mortality of B20 combined with ciprofloxacin and clarithromycin against P. aeruginosa were 48.27% and 49.79%, respectively, while ciprofloxacin and clarithromycin had only 16.99% and 29.11% of bacterial mortality against P. aeruginosa when used alone. Mechanistic studies indicated that B20 directly inhibited the QS pathway based on the GFP reporter strain assay. Overall, this compound with oxazolopyridinone core could serve as an antibacterial lead of QS inhibitor for further evaluation of its drug-likeness.


Assuntos
Antibacterianos , Percepção de Quorum , Antibacterianos/farmacologia , Ciprofloxacina , Claritromicina , Pseudomonas aeruginosa , Piocianina/química , Percepção de Quorum/efeitos dos fármacos
18.
Sci Rep ; 12(1): 13992, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978046

RESUMO

Proteus mirabilis (P. mirabilis) is a frequent cause of catheter-associated urinary tract infections. This study aims to investigate the anti-infective effect of Alhagi maurorum extract (AME), the traditional medicinal plant in the middle east, on the biofilm-forming P. mirabilis isolates. Hydroalcoholic extract and oil of A. maurorum were characterized by HPLC and GC-MS. The antiproliferative, anti-biofilm, and bactericidal activity of AME at various concentrations were assessed by turbidity, crystal violet binding, and agar well diffusion assays, respectively. The AME's effect on adhesion and quorum sensing (QS) were investigated by in vitro adhesion assay on cell culture and agar overlay assay using Janthinobacterium lividum (ATCC 12472) as a biosensor strain. In addition, the expression level of selected genes involved in QS and biofilm regulation were determined by quantitative Real-Time PCR. Furthermore, the bladder phantom model was created to evaluate the assays and investigate the catheter's calcium deposition. The most effective chemical compounds found in AME were tamarixetin, quercetin, and trans-anethole. Although AME did not inhibit swarming motility, it reduced biofilm production and exerted a concentration-dependent anti-adhesive and anti-QS activity against P. mirabilis. AME also downregulated the expression level of selected genes involved in biofilm formation and QS. This study showed that AME as a natural compound reduced biofilm formation of P. mirabilis by targeting virulence factor genes, quorum sensing, and other strategies that include preventing the adhesion of P. mirabilis to the cells. The results suggest that A. maurorum extract might have the potential to be considered for preventing UTIs caused by P. mirabilis.


Assuntos
Biofilmes , Fabaceae , Extratos Vegetais , Plantas Medicinais , Proteus mirabilis , Percepção de Quorum , Ágar , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Catéteres/efeitos adversos , Catéteres/microbiologia , Fabaceae/química , Humanos , Fitoterapia , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Proteus mirabilis/efeitos dos fármacos , Proteus mirabilis/genética , Proteus mirabilis/patogenicidade , Proteus mirabilis/fisiologia , Percepção de Quorum/efeitos dos fármacos , Percepção de Quorum/genética , Infecções Urinárias/microbiologia , Virulência/efeitos dos fármacos , Virulência/genética
19.
Molecules ; 27(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35208954

RESUMO

Quorum-sensing (QS) systems of Pseudomonas aeruginosa are involved in the control of biofilm formation and virulence factor production. The current study evaluated the ability of halogenated dihydropyrrol-2-ones (DHP) (Br (4a), Cl (4b), and F (4c)) and a non-halogenated version (4d) to inhibit the QS receptor proteins LasR and PqsR. The DHP molecules exhibited concentration-dependent inhibition of LasR and PqsR receptor proteins. For LasR, all compounds showed similar inhibition levels. However, compound 4a (Br) showed the highest decrease (two-fold) for PqsR, even at the lowest concentration (12.5 µg/mL). Inhibition of QS decreased pyocyanin production amongst P. aeruginosa PAO1, MH602, ATCC 25619, and two clinical isolates (DFU-53 and 364707). In the presence of DHP, P. aeruginosa ATCC 25619 showed the highest decrease in pyocyanin production, whereas clinical isolate DFU-53 showed the lowest decrease. All three halogenated DHPs also reduced biofilm formation by between 31 and 34%. The non-halogenated compound 4d exhibited complete inhibition of LasR and had some inhibition of PqsR, pyocyanin, and biofilm formation, but comparatively less than halogenated DHPs.


Assuntos
Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Quinolonas/metabolismo , Percepção de Quorum/efeitos dos fármacos , Piocianina/análogos & derivados , Piocianina/síntese química , Piocianina/química , Piocianina/farmacologia
20.
Microbiol Spectr ; 10(1): e0176821, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35196792

RESUMO

Carbapenem resistance of Acinetobacter baumannii poses challenges to public health. Biofilm contributes to the persistence of A. baumannii cells. This study was designed to investigate the genetic relationships among carbapenem resistance, polymyxin resistance, multidrug resistance, biofilm formation, and surface-associated motility and evaluate the antibiofilm effect of polymyxin in combination with other antibiotics. A total of 103 clinical A. baumannii strains were used to determine antibiotic susceptibility, biofilm formation capacity, and motility. Enterobacterial repetitive intergenic consensus (ERIC)-PCR fingerprinting was used to determine the genetic variation among strains. The distribution of 17 genes related to the resistance-nodulation-cell division (RND)-type efflux, autoinducer-receptor (AbaI/AbaR) quorum sensing, oxacillinases (OXA)-23, and insertion sequence of ISAba1 element was investigated. The representative strains were chosen to evaluate the gene transcription and the antibiofilm activity by polymyxin B (PB) in combination with merapenem, levofloxacin, and ceftazidime, respectively. ERIC-PCR-dependent fingerprints were found to be associated with carbapenem resistance and multidrug resistance. The presence of blaOXA-23 was found to correlate with genes involved in ISAba1 insertion, AbaI/AbaR quorum sensing, and AdeABC efflux. Carbapenem resistance was observed to be negatively correlated with biofilm formation and positively correlated with motility. PB in combination with ceftazidime displayed a synergistic antibiofilm effect against robust biofilm formed by an A. baumannii strain with deficiency in AbaI/AbaR quorum sensing. Our results not only clarify the genetic correlation among carbapenem resistance, biofilm formation, and pathogenicity in a certain level but also provide a theoretical basis for clinical applications of polymyxin-based combination of antibiotics in antibiofilm therapy. IMPORTANCE Deeper explorations of molecular correlation among antibiotic resistance, biofilm formation, and pathogenicity could provide novel insights that would facilitate the development of therapeutics and prevention against A. baumannii biofilm-related infections. The major finding that polymyxin B in combination with ceftazidime displayed a synergistic antibiofilm effect against robust biofilm formed by an A. baumannii strain with genetic deficiency in AbaI/AbaR quorum sensing further provides a theoretical basis for clinical applications of antibiotics in combination with quorum quenching in antibiofilm therapy.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Ceftazidima/uso terapêutico , Polimixina B/uso terapêutico , Percepção de Quorum/genética , Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/crescimento & desenvolvimento , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes/crescimento & desenvolvimento , Ceftazidima/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Quimioterapia Combinada/métodos , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase , Polimixina B/farmacologia , Percepção de Quorum/efeitos dos fármacos , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA